17.05.2012 2948

Закономерности генерирования и преобразования информации в актах познания и управления

 

Информациогенез - генерация информации - морфологически (как изменение разнообразия открытой системы) происходит по синергетическим законам. Для нас важно, что это изменение сопровождается семантическим изменением внутренней информации системы, синтаксически отображаемым в ее кодах. Такое изменение может быть либо генерацией (при росте разнообразия), либо диссипацией (при уменьшении разнообразия) информации.

Все исследователи в области системного анализа сходятся во мнении, что тезаурус интеллектуальной системы в процессе развития строится на комбинаторно-иерархическом принципе за счет постепенного объединения информационных блоков - сначала самых простых, затем все более сложных. Эти блоки используют коды системы - наследственные и (или) инкорпорированные из среды - и представляют в действительности клеточные ансамбли нейронных сетей (естественных или искусственных). Укрупнение блоков, а также их внутренняя морфологическая и функциональная модификация, сводящаяся к креации связей между клетками (нейронами), стимулируется средой (познание) или системой (самопознание). При этом интеллектуальная система с тезаурусом - либо индивид (естественный, искусственный), либо популяция, социум, сеть с распределенной базой знаний - корпоративным тезаурусом.

Сначала происходят количественные изменения внутри блоков: устанавливаются связи между информационными элементами блоков по принципам идентичности (00,11) и комплементарности (01,10). Когда все комбинации связей, формирующих знание, необходимое для регулятивного парирования среды, исчерпаны, вступает в действие закон необходимого разнообразия - тезаурус более не способен помочь системе в парировании среды, требуется укрупнение информационных блоков, что и делается. При этом потенциальный спектр связей расширяется (триады 000,001,010, 011,100,101,110,111, тетрады 0000,0001,0010,0011,0100,0101, 0110,0111, 1000,1001,1010,1011,1100,1101,1110,1111 и т.д.). Любое укрупнение, как мы видим, приводит к росту разнообразия в информационном смысле, т.е. к генерации новой информации - происходит качественный скачок знания. Обратим внимание, что приведенные в качестве примера информационные тетрады (биологические квадруплеты) нулей и единиц базируются на триадах (триплетах), те, в свою очередь, на диадах (дуплетах) и, наконец, последние - на монадах двоичного кода, способных только не две комбинации (0 и 1).

Реальные коды тезаурусов (генетический, белковые, метаболические - в широком смысле) оказывают существенное влияние на темпы самоорганизации тезауруса. Чем сложнее код (по объему алфавита), тем большим разнообразием обладает каждый информационный блок тезауруса по сравнению с аналогичным блоком при простом коде. Так, монада («буква») генетического кода способна дать 4 комбинации, монада белкового кода - 20, русского языка - 33 комбинации, а дуплет - соответственно 16, 400 и 1089 комбинаций (у дуплета двоичного кода - 4 комбинации). Следовательно, при очередном качественном скачке (укрупнении блоков) тезауруса, кодированного неизменным сложным кодом, внутри блочные связи комбинируются дольше, чем при простом кодировании, и только потому, что их потенциально больше. Эти механизмы объяснимы в рамках принципа роста разнообразия, где переход к очередному показателю степени (уровню иерархии) и есть укрупнение информационных блоков.

Увеличение длительности внутри блочных комбинаторных процессов функционально-морфологического связывания информационных элементов тезауруса по мере его развития приводит к тому, что частота качественных скачков знания на поздних стадиях развития уменьшается по сравнению с ранними стадиями самоорганизации тезауруса. Это подтверждает, например, график скорости восприятия человеком новых знаний. Здесь явно видна тенденция уменьшения скорости восприятия знаний после 4-хлетнего возраста - вначале медленная, а к старости катастрофически быстрая.

Конечно, этот эффект объясняется сложнее, чем мы это сделали. Ведь объединение информационных блоков и комбинирование связей внутри них (по принципу роста разнообразия) - лишь внешнее имплицитное проявление латентных информационных факторов, которые нам еще предстоит выявить. Свидетельство тому - инкрементная часть графика (до 4-х летнего возраста). Кроме того, интеллект не использует без разбора (а вернее, без отбора) все потенциальные комбинации внутри- и межблочных информационных связей для обогащения тезауруса. Механизм интеллектуального отбора выбирает наиболее ценные из этих связей в соответствии с некоторой целью. И если первые шаги в становлении и развитии тезауруса начинаются с первоначального накопления некоторого минимума разнообразия связей (состояний) по принципу «лучше что попало, чем ничего», то целенаправленный отбор ценных и отбраковка бесполезных (вредных) связей осуществляются по принципу «лучше ничего, чем что попало».

Накопление, связывание, комбинирование, укрупнение, отбор и, наконец, генерирование информации - операции (действия), составляющие целенаправленную последовательность - алгоритм, реализуемый через программу. Логично назвать ее программой генерирования информации.

Откуда ей взяться и где ее хранить? Когда учащегося выручает память, ему не нужна такая программа. Но как только в результате нескольких провалов он почувствует, что метод простого накопления данных не помогает и, более того, опасен, возникает потребность в другом методе, основанном не на запоминании, а на понимании данных и взаимосвязей между ними. Подобная ломка метода мучительна, но необходима. Удастся - система выживет, и будет развиваться, не удастся - система умрет, не живя, или деградирует вплоть до полного разложения.

Так возникает программа генерирования информации как меры организованности системы знаний. Без такой программы самоорганизация системы, а, следовательно, и сама система невозможны. Далее под самоорганизацией системы будем понимать плановый процесс роста ее разнообразия за счет вещества и энергии среды. Рост разнообразия эквивалентен генерированию информации в морфологических кодах.

Таким образом, программа генерирования информации может возникнуть параллельно с процессом роста разнообразия. Естественным местом ее хранения является тезаурус системы. Очевидно, что до возникновения потребности в такой программе не было потребности и в тезаурусе. Но, однажды образовавшись как запоминающее устройство (ЗУ), тезаурус, так же как ЗУ ЭВМ, позволяет хранить и редактировать помещенные в него программы (дополнять, модифицировать, стирать) наряду с данными (принцип хранимой программы в неймановской машине). При этом разнообразие элементного состава системы (данных) растет за счет вещественно-энергетических обменных процессов под управлением генетической программы, а разнообразие связей (отношений) между элементами - за счет информационного метаболизма под управлением программы генерирования информации, которая, в свою очередь, возникает и совершенствуется в процессе этого же метаболизма. Обе программы взаимосвязаны.

Генерирование информации, предположительно, дискретно и совпадает с моментами самопознания системой своего возросшего разнообразия N>n. Сгенерированная информация согласно закону конечной информации конечна. В соответствии с принципом хранимой программы программа генерирования информации хранится в кодах тезауруса.

Благодаря этой программе рост разнообразия приобретает более ценный для системы характер, ибо ее состояния включают комбинации уже не только свойств отдельных элементов, но и образованных этой программой свойств взаимосвязей и групповых свойств элементов. И так же как случай оказывает основное влияние на раннее морфологическое развитие системы, так по мере наполнения и совершенствования ее тезауруса все большее влияние на самоорганизацию системы оказывает программа генерирования информации и информационный обмен со средой. Система, сначала запасавшая впрок что попало, по мере развития становится разборчивой, отметает случайные данные и заполняет память уже не ими, а знаниями, где все элементы накопленного разнообразия увязаны между собой в единую систему, отвечающую цели развития.

Это нивелирование случайности развития по мере усложнения тезауруса приводит и к уменьшению естественных мутаций биосистем. Вероятность ощутимых генетических мутаций высокоразвитых систем исчезающе мала. Правда, это может оказаться опасным для таких систем в том смысле, что они теряют способность быстро адаптироваться к резко изменившейся среде обитания. Передозировка информации, генерируемой сверхсложным тезаурусом, устойчивость систем к мутациям по своим последствиям сходны с судьбой консервативных систем, потерявших способность развиваться.

Отметим, что любая система со стабильным тезаурусом в разных условиях может обладать разной степенью организованности. Так, достаточно организованная целостная система житейских знаний некоторого человека может вносить слишком малый вклад в систему его производственных и, тем более, научных знаний. Причин здесь две - нехватка данных на каждом из более высоких уровней и нехватка связей между данными. В результате целостная система знаний сужается и (или) рассыпается на более мелкие целостные системы вплоть до полного исчезновения систем как таковых. Выше порога возможны связи (взаимовлияния) элементов, ниже порога связей нет (элементы не реагируют на состояния друг друга).

Таким образом, понятие порога гносеологически и онтологически значимо и заслуживает специального исследования.

С другой стороны, система, однажды организованная в некоторой среде, может сохранять свою организацию в других средах без повреждения («принцип бетона»).

Если человек что-то понял и полученное знание закрепилось, целостность системы знаний может быть нарушена только при патологических изменениях мозга.

Словом, результат самоорганизации открытой системы зависит от программы генерирования информации, хранимой в тезаурусе системы и управляющей процессом самоорганизации с соблюдением законов и принципов информационного подхода, в частности, закона сохранения информации, гносеологическая версия которого позволяет утверждать, что полная взаимная информация развивающейся системы и среды всегда ограничена достигнутой информативностью тезауруса.

Обратим внимание на технологию работы программы генерирования информации. Эта технология базируется на синергетическом принципе программного управления, реализованном в эволюционном механизме развивающихся систем и в неймановском компьютере. Суть принципа состоит в том, что программа планирует поведение системы (компьютера) не на весь жизненный цикл (сеанс работы), а всего на один следующий шаг (одну команду). Для развивающегося тезауруса реализация этого принципа сводится к незначительному увеличению базы знаний на очередном шаге самоорганизации по отношению к предыдущему шагу.

Все в мире развивается именно таким путем - от простого к сложному, пошагово, постепенно. Ничто не совершается сразу. Наличие переходного (эволюционного) процесса - закон. Точно предсказать его исход невозможно, т.к. это вероятностный процесс, в котором корреляции между случайными событиями не жестко детерминированы. Для биосистем и тезауруса это правило может быть сформулировано так: «Каждая отдельная система, возникающая в результате мутаций и отбора, непредсказуема в отношении своей структуры, тем не менее, неизбежным результатом всегда является процесс эволюции - это закон».

Малая дозировка сложности, как и незнакомого лекарства, представляется единственно разумным способом поведения системы в условиях априорной неопределенности последствий. Передозировка чревата летальным исходом, если «лекарство» вредно для системы, в частности, если оно не оптимизирует ее целевую функцию развития. Малая доза не способна убить систему. Но если система своевременно не распознает вреда, она может продолжать наращивать свою сложность в избранном ложном направлении, и в конце концов, при очередной бифуркации сработает отрицательный кумулятивный эффект вредной сложности - система деградирует и погибает. Куда программа развития (генерирования информации) заведет систему - к правильному решению или сбою - зависит только от программы и использованных ею данных. Для этого в ней должны быть предусмотрены средства защиты от ошибок выполнения и некачественных данных.

Самоорганизация - статистический процесс, и наряду с безнадежными системами найдутся и такие, которые благодаря средствам защитного программирования своевременно отказались от вредных данных и выполнения сбойных команд. Приращение сложности таких систем направлено на оптимизацию их целевой функции. При очередной количественно - качественной бифуркации такие системы будут прогрессировать. Но и эти системы наращивают свою сложность осторожно, малыми дозами, пошагово, не «переедая».

Достоинство пошагового достижения заданной сложности и эффективности в том, что система может это сделать сама, без внешней помощи. Так, начинающий спортсмен может сразу стать олимпийским чемпионом разве что с помощью Бога. Но, упорно тренируясь, он шаг за шагом сам (и никто за него!) придет к олимпийскому пьедесталу. Если же его программа тренировок была тупиковой, что ж, олимпийским чемпионом станет другой.

На вопрос, почему прогрессивное развитие идет от простого к сложному, а не наоборот, отвечает закон необходимого разнообразия Эшби, согласно которому чем больше (разнообразнее, сложнее) среда возмущает (стимулирует) развивающуюся систему, тем больше должно быть ответных реакций системы для ее эффективного существования в среде, т.е. система должна усложняться. И наоборот, чем меньше стимулируется система, тем проще она может быть. Но это уже регрессивное развитие - деградация системы.

Платой за самостоятельность (в изложенном смысле) является время. Самоорганизация систем требует существенно большего времени, чем потребовалось бы их создателю. Есть феноменальные люди, способные практически мгновенно «создать» ответ некоторой вычислительной задачи. Если же для ее решения использовать итерационный алгоритм вычислительной математики, то чем более точный (а, следовательно, и более сложный - по числу точных знаков после десятичной запятой) результат мы хотим получить, тем больше итераций должна сделать программа и, соответственно, тем дольше она занимает компьютер.

Эволюция космических тел согласно научным данным проходит в течение нескольких миллиардов лет, эволюция живой природы на Земле - сотни миллионов лет, эволюция разума - десятки миллионов лет. А Бог на третий день создал «зелень, траву, сеющую семя по роду и по подобию ее, и дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле», на четвертый день - «светила на тверди небесной» (Библия, Бытие, 1). За следующие два дня Господь создал всю фауну и человека.

Мы восхищаемся проворностью Творца. Эволюции же Творец не требуется. Господь Бог или эволюция? - извечная дилемма.

Многошаговые (бесконечно шаговые) процессы с оптимизацией некоторой целевой функции, подобные эволюции и самоорганизации тезауруса, часто встречаются в задачах динамического планирования, распределения ресурсов, оптимизации транспортных перевозок и др. Для решения подобных задач есть свой аппарат - метод динамического программирования, суть которого сводится к следующему: из двух возможных способов решения многошаговых задач (искать сразу все элементы решения на всех шагах либо строить оптимальное управление шаг за шагом, на каждом этапе оптимизируя только один шаг) второй способ оптимизации проще, чем первый, особенно при большом числе шагов. Обратим внимание, что задачи распределения ресурсов и оптимизации транспортных перевозок, по существу, являются основными в биологических и интеллектуальных процессах метаболизма. Соответственно, нет оснований полагать, что природа для решения задач самоорганизации выбирает сложные пути (созидание) вместо простых (эволюция). Ее существующая сложность изначально проста. Наша задача - понять эту простоту.

Было бы наивным полагать, что простота механизма самоорганизации в нашем понимании идентична простоте в «понимании» природы. Поиск простоты в сложности природы как одна из сторон реализации принципа простоты, по возможности, не должен быть слишком антропным. Достичь такого понимания природы, не ограниченного человеческим опытом, дано немногим. В физике XX века это, пожалуй, Бор, Эйнштейн, Лоренц, де Бройль, Паули, Гейзенберг, Ландау. Известный афоризм Н. Бора о теориях, недостаточно безумных, чтобы быть правильными, образно демонстрирует стиль, исповедуемый современной наукой.

Проанализируем некоторые эмпирические примеры самоорганизации, приводятся примеры биологической самоорганизации (популяций амеб и термитов): при угрозе голода амебы стягиваются в единую многоклеточную массу, личинки термитов концентрируются в ограниченной области термитника. Подобная кооперативная самоорганизация свойственна любой популяции, т.к. «общий котел» всегда выгодней, экономней, чем раздельное питание. В этих примерах (вне зависимости от конкретного механизма самоорганизации каждой популяции) важно понять, что стимулом самоорганизации было достижение величиной разнообразия популяции некоторого контролируемого порога, вызывающего подпрограмму принятия «организационного решения». Подобный алгоритм самоорганизации характерен для коацерватных капель, развивающихся и конкурирующих фирм, государств, избирательных блоков, студентов перед экзаменом, семей и кланов и т.д. При этом глубинным мотивом кооперативной самоорганизации в общем случае является инстинкт самосохранения (выживания), проявляющийся не только при угрозе голода, но и при любой опасности со стороны враждебной среды. Так, «сытые» поодиночке предприниматели объединяются перед угрозой национализации частной собственности, слабые объединяются в стаи, племена, государства, (кон) федерации, союзы перед угрозой силы. Вполне вероятно, что и многоклеточные организмы появились в результате кооперативной самоорганизации одноклеточных, что облегчило совместное выживание, усвоение энергии и вещества, устойчивость в агрессивной среде.

В основе (на входе) любого организационного решения лежит информация - пока система не осознала входной информации, ни о каком решении речи быть не может. Это, если угодно, аксиома теории управления. Следовательно, к самоорганизации, действительно, можно прийти только через познание собственного разнообразия. А познание без тезауруса, хранящего информацию и программу ее генерирования, невозможно.

Итак, генерация информации происходит в процессе освоения (самопознания) системой приобретенного разнообразия, и этот процесс состоит в опосредованном (через разнообразие) распознавании и перекодировании внешней информации среды во внутренние более ценные информационные коды упорядоченности, смысла, знания (в зависимости от достигнутого системой уровня развития). Такое распознавание и перекодирование эквивалентно генерации все более ценных видов информации и возможно только при наличии программы развития и, в частности, программы генерирования информации, по принципам своей работы сходной с принципами «неймановского компьютера».

Это не случайное совпадение - фон Нейман тесно сотрудничал с Винером и другими пионерами кибернетики в выработке компьютерных и кибернетических концепций.

Программное управление объектом осуществляется посредством команд. При этом априори полагается, что энергетика команд может быть малой - значительно меньшей, чем энергетика объекта управления. И чем меньше потребная энергетика управления по сравнению с энергоресурсом объекта при неизменном качестве управления, тем управление эффективнее. Следовательно, наиболее эффективно в указанном смысле управление, вообще не требующее энергии – без энергетическое управление.

С другой стороны, из закона необходимого разнообразия следует, что ограничение, т.е. уменьшение разнообразия выходов объекта как цель управления достигается увеличением разнообразия управлений, т.е. ростом сложности регулятора. Но чем регулятор сложнее, тем он энергозатратнее.

Налицо энергетическая антиномия оптимального управления: для достижения эффективного управления его энергетику надо одновременно уменьшать и увеличивать. Это говорит о скрытом энергетическом оптимуме управления как консенсусе разнополярных тенденций. Для поиска этого оптимума перейдем от энергетического базиса управления к информационному, опираясь на известный тезис Шеннона о том. что с информацией можно обращаться почти так же, как с массой и энергией, т.е. давать информации физическую интерпретацию по метапринципу аналогии.

Начнем с того, что фундаментальную значимость закона необходимого разнообразия для управления, на наш взгляд, не следует преувеличивать. Во-первых, этот закон выведен только для гомеостатического управления в кибернетических системах. В иерархии задач управления гомео - стаз состояний и процессов занимает самую нижнюю ступень, и это не случайно. Гомеостаз, как отмечалось, генетически связан с законами сохранения физических систем и поэтому, несмотря на свою распространенность, уступает по сложности многим алгоритмам управления, встречающимся в кибернетических системах. В этих алгоритмах, связанных не с сохранением, а с изменением состояний и процессов, единичными актами поведения, сериями и комбинациями единичных актов, закон необходимого разнообразия в лучшем случае соограничивает управления наравне с другими ресурсными ограничениями (по энергетике, запаздыванию, стоимости, живучести и т.п.), а в худшем случае излишен, если ни прямо, ни косвенно не связан с критерием эффективности управления, как при гомеостазе.

Во-вторых, целеполагание любого управления в определенном смысле оптимально, т. е. либо максимизируется эффективность при заданных ресурсных ограничениях, либо минимизируются ресурсные затраты при заданной эффективности. Иными словами, любое управление решает экстремальную задачу относительно некоторой целевой функции при заданных ограничениях. Можно ли считать необходимый оптимум (минимум) разнообразия управлений, предлагаемый законом Эшби, достаточным для гомеостатического управления? На наш взгляд, нельзя, ибо этот оптимум априорен, т.е. зависим от априорного разнообразия воздействий среды на объект управления.

Достаточный оптимум достижим только в адаптивном регуляторе, в котором ресурс разнообразия управлений закладывается с учетом возможных вариаций разнообразия возмущений от ожидаемой среды обитания объекта, а необходимые управления адаптивно формируются с учетом текущего разнообразия возмущений. Поскольку текущее разнообразие управлений не превышает своего максимально возможного значения для адаптивного регулятора, последний всегда имеет резерв управлений, требующий ресурсных затрат и, как показывают системные исследования, не беспредельный.

В системных исследованиях подобные задачи известны как проблема отношений «эффективность-ресурс», «эффективность-сложность», «эффективность-стоимость», где ресурс и сложность могут быть сведены к понятию стоимости как количественной меры любой платы (материально-энергетической, финансовой, психологической, социальной и т.п.) за ресурс или сложность. Эффективность управления тоже может измеряться в единицах стоимости как доход, обеспечиваемый ресурсными затратами на управление, его усложнением. Далее рассмотрим задачу управления как проблему отношения «эффективность-стоимость- сложность», где под сложностью будем понимать функционал от разнообразия управлений.

Согласно принципу роста разнообразия алфавит состояний реальных источников информации стратифицирован по сложности, т.е. представляет многократную показательно-степенную функцию типа, где каждый показатель степени соответствует своему иерархическому уровню сложности вплоть до того над уровня, для которого и оценивается разнообразие состояний. Последнее, в свою очередь, будет служить объемом алфавита для вышележащего уровня иерархии страт сложности. Поэтому аргумент n, имеющий смысл объема алфавита на i-ом уровне иерархии сложности, является разнообразием состояний Q на (i-1)- ом уровне стратификации. Иными словами, сложность регулятора как источника команд (информации) управления имеет одинаковый смысл - смысл разнообразия управлений.

Обратим внимание на следующие особенности поведения эффективности, стоимости и информационной энтропии регулятора с изменением его сложности:

- существует оптимальное (максимальное) отношение Эффективность/Стоимость; недостаточное разнообразие управлений вредно не меньше, чем и его излишняя избыточность;

- тренды Эффективность-Сложность и Энтропия-Сложность подобны, хотя математически логистическая кривая Эффективность (п) отличается от зависимости H(n) тем, что первая содержит экспоненциальное ядро, а вторая - логарифмическое;

- с ростом сложности регулятора его стоимость растет непропорционально быстро по сравнению с ростом эффективности управления;

- кривая Эффективность (п) имеет предел, а H(n) его не имеет, медленно, но монотонно стремясь к бесконечности.

За внешним подобием тенденций поведения эффективности и информативности регулятора с изменением разнообразия его управлений, повидимому, скрывается их сущностная корреляция. Для этого достаточно вспомнить, что «ограничение разнообразия» есть одно из определений внешней информации. И оно же есть одно из определений управления.

Можно возразить, что поведенчески энтропия подобна эффективности лишь в математическом смысле - просто потому, что мы используем из некоторых соображений логарифмическую меру информации. На самом деле такая мера вполне физична.

Проинтерпретируем характер зависимостей эффективности и стоимости регулятора от его сложности. Грань между реальностью и мнимостью любой системы обусловливается, в конце концов, ее сложностью. Так, стабильная кибернетическая система согласно закону необходимого разнообразия должна иметь определенный минимум сложности для самоорганизации и жизнеспособности. Слишком простая система не способна адекватно реагировать на многообразие возмущающих воздействий внешней среды. В то же время увеличение сложности сверх некоторого порога увеличивает вероятность отказа системы, если последняя не предпринимает мер по ресурсному обеспечению возросшей сложности. Для поддержания ее живучести при отказах требуется введение резервных цепей, узлов, агрегатов, взаимосвязанных через сложную систему саморегулирования, т.е. дальнейшее усложнение. Пример этому - растения, животные и человек, которые, несмотря на болезни, раны и даже клиническую смерть, выкарабкиваются снова и снова за счет включения внутреннего горячего резерва в экстремальных ситуациях.

При этом нельзя считать, что резервирование всегда полезно для сложной системы. Занимая некоторую физическую часть системы, резерв отнимает часть ее энергетического и информационного ресурсов и иногда вступает в неожиданные и конфликтные взаимодействия с основным (активным) ресурсом системы. Так, в технических системах известны неспровоцированные срабатывания аварийных агрегатов, сбои и внутренние конфликты переусложненных аппаратно-программных средств компьютеров (например, при внедрении мультимедийных и телекоммуникационных технологий) и т.д. Аналогичные проблемы свойственны биологическим системам (мозг в состоянии психической перегрузки), крупным популяциям, сложным организационным системам. Сложная сверх меры система становится внутренне противоречивой (конфликтной) и как бы «пожирает саму себя», уплатив слишком высокую цену за свою эффективность - вот в чем проблема, во многом давшая начало современной теории конфликтных ситуаций. При этом стоимость каждого грана эффективности для развитой системы непропорционально выше, чем для неразвитой.

Следовательно, есть предел сложности, выше которого реальность стабильного материального существования системы так же сомнительна, как и при ее недостаточной сложности. Поэтому жизнеспособная система, приблизившись по сложности к этому пределу, если и развивается дальше, то только не в сторону усложнения своей морфологии. Возможно, поэтому многие виды жизни на Земле или не эволюционируют в течение десятков тысячелетий, или их эволюция протекает очень медленно, или они вымирают, превысив допустимую (по стоимости) сложность. Возможно, по той же причине развитие мозга высших животных и человека давно уже идет не по морфологическому пути (предел, достигнут), а по информационному и функциональному (накопление и генерация новых знаний и умений, личностная и популяционная интеллектуализация).

Итак, предельность эффективности регулятора обусловлена его ресурсными, прежде всего, материально-энергетическими ограничениями, налагающими запрет на безудержный рост стоимости управлений. В то же время беспредельность энтропии (информативности) можно объяснить ее вне энергетической природой. Так, ограниченный по памяти и быстродействию компьютер в то же время не имеет принципиальных информационных ограничений по сложности решаемых задач, т.к. программы в потенции сгенерируют любую недостающую ему информацию. Аналогично не существует принципиальных теоретических ограничений на уровень естественного и искусственного интеллектов, управляемых программами самообучения. Но плата за программы неизбежна со стороны, как компьютера, так и программистов, и здесь возникает оптимизационная задача, приводящая нас к информационному принципу управления: управление информационно-энергетически оптимально, если выбрано такое разнообразие управлений, при котором потенциально достижим максимум информативности управления на единицу ресурсных затрат.

Оптимальность разнообразия управлений физически означает невозможность ни убавить управления (во избежание опасной несенситивности регулятора в результате нарушения закона необходимого разнообразия), ни прибавить их (во избежание чрезмерных для регулятора ресурсных затрат). Если разнообразие управлений меньше требуемого по закону необходимого разнообразия, информативность управления будет низкой, далекой от оптимума, ибо при этом не достигается необходимое ограничение разнообразия возмущений. Поэтому информационный принцип управления может включать в себя закон необходимого разнообразия в качестве ограничения.

Информационный принцип управления созвучен феноменологическому определению эстетического качества Гемстергейса (XVIII в.) как «сообщению возможно большего числа представлений в возможно меньшее время», эстетической мере Г.Д. Биркгоффа как отношению меры «порядка» к мере «сложности» (усилий понимания), принципу «наименьшей затраты сил» Р. Авенариуса и отчасти принципу «экономии мышления Э. Маха».

Воспользуемся математическими дескрипциями кривых информативности и стоимости регулятора для вывода закона на основе сформулированного информационного принципа управления.

Вне зависимости от формального представления информативности регулятора оптимальные информационно - энергетические управления по мере роста п, т.е. с повышением сложности («интеллекта») регулятора в ходе его развития требуют все меньшего прироста ресурсных затрат, а в пределе - нулевого прироста (в>0). Следовательно, у высокоинформативных интеллектуальных систем информационные процессы, начиная с некоторого достаточно большого n, практически не требуют дополнительной энергетики (и других ресурсов).

Налицо информационная экспансия - с ростом сложности системы ее информативность (внутренняя информация) растет, а потребность в увеличении ресурсных затрат уменьшается и в пределе фиксируется на нулевом приросте, что соответствует исходному уровню затрата.

Поэтому назовем выведенный закон законом информационной экспансии и сформулируем его в следующем виде: чем более информативна система, тем меньше должен быть темп роста ее стоимости, при этом сама стоимость должна стабилизироваться на уровне первоначальной (до начала развития) ресурсной платы.

Философский смысл закона информационной экспансии мы усматриваем в следующем. Если перейти от понятия регулятора к понятию системы, то вопреки материально-энергетической тенденции убыстрения роста стоимости системы по мере ее усложнения и роста информативности задача согласно выведенному закону состоит как раз в обратном - с усложнением системы темп в роста стоимости (а значит, энергетических затрат) должен асимптотически стремиться к нулю, стабилизируя стоимость оптимальной системы на уровне ее первоначальных ресурсных затрат. Такой парадоксальный вывод противоречил бы всем канонам классической науки и здравому смыслу, если бы мы игнорировали возможность без энергетического (не силового) или, по крайней мере, мало энергетического информационного управления. Но мы не будем этого делать, мы не будем игнорировать такой возможности, хотя аподиктических, общепризнанных данных на этот счет нет. Что ж, все научные и философские концепции при своем возникновении не были аподиктическими. Часть из них приводила к отрицательным (пока!) результатам, другая - к положительным (пока!). Из этого вовсе не следуют умозаключения об абсолютной пользе общепринятых и абсолютном вреде непризнанных концепций. Последуем мудрости Н. Винера, который призывал: «Когда единственный недостаток доказательства - его необычность, пусть у вас достанет смелости принять и его, и эту необычность».

Закон информационной экспансии по своей природе интенционален, обусловлен сознанием, поэтому пока возможные области его действия - гносеология, праксеология, но не онтология. Впрочем, с вероятностью, отличной от нуля, не исключены и онтологические корни данного закона, что представляет интерес для дальнейших исследований

Закон информационной экспансии с позиций, внешне весьма далеких от концепции информационного монизма и герменевтического подхода к понятию отражения, от теорий информационного и калибровочного полей, косвенно указывает на оптимальность чисто информационного управления как перспективы развития традиционного информационно - энергетического управления с его проблематичной оптимальностью. У простейших систем с конечным относительно малым разнообразием управлений (n>1) скорость в>0, что означает допустимость энергозатратного управления. У сложных систем (биосистем, животных, человека, перспективных компьютеров) с скорость в>0, и энергозатратное управление становится недопустимым (первоначальные затраты а не увеличиваются). Если предположить, что человек как система (регулятор) оптимален (а на этом настаивают все антропоцентрические учения), то все его высшие управления, направленные вовне и внутрь себя, чисто информационны. Высшие формы управления (регуляции) требуют погружения системы (регулятора) в информацию и только в нее, разрешая использовать для этого минимум имеющихся ресурсов.

Физически это может быть объяснено тем, что с ростом сложности (и, соответственно, энергозатрат) материальных регуляторов обычно возрастает их внутренний уровень шумов, что загрубляет чувствительность каналов связи. Достаточно сравнить эти чувствительности у насекомых, рептилий, птиц и далее по восходящей - вплоть до человека, чтобы убедиться в этом. У высших (сверхсложных) регуляторов шумы, если не предпринять специальных мер, могут вообще элиминировать связь как таковую. Такими мерами, на наш взгляд, и являются чисто информационные управления, инициируемые особыми состояниями регулятора, далекими от «шумящей» энергетики традиционных управлений. На необходимость и, более того, на реальность таких особых состояний указывает закон информационной экспансии, подтверждаемый на практике прогрессом энергосбережения в компьютерах по мере их эволюции от энергозатратных вычислительных машин (мэйнфреймов) 50-70 г.г. к современным и, тем более, перспективным микроминиатюрным информационным компьютерам, возможности которых по обработке информации ушли далеко вперед по сравнению с ЭВМ - «большими калькуляторами» прошлых десятилетий - и все больше конкурируют с информационными возможностями человека. Другой пример - эволюция постиндустриального общества в информационное с его культом знаний, информацией как национальным ресурсом и производительной силой, перекачкой трудовых ресурсов из сферы материального производства в информационную сферу.

Из закона информационной экспансии следует, что хороший регулятор отличается от плохого оптимальным разнообразием своего командного языка. Но разве мало примеров, что при одинаковом уровне оптимальности одни регуляторы эффективны, а другие нет? Дело в том, что информационный оптимум управления интенциально возможен (достижим по информационному принципу управления), он целеполагается, но он не ригористичен (как не ригористичен закон информационной экспансии). Именно в этом смысле надо понимать его принципиальную достижимость. И суть здесь в том, что каждая из потенциально возможных команд управления не равновозможна, а разновозможна в использовании. Равновоз - можность - лишь гипотетический частный случай разновозможности команд. Во-первых, разновозможны элементарные команды (микрокоманды), причем степень разновозможности применения даже одной микрокоманды зависит от области применения (литературной, научной, бытовой, публицистической и т.п.). Во-вторых, разновозможны комбинации микрокоманд (команды, макрокоманды), ибо ценность каждой команды (макрокоманды) зависит от ситуации управления. В этом смысле управления по ценности должны быть релевантны, адекватны ситуации, сложившейся для объекта управления в его среде обитания.

В этом состоит интенциональный принцип максимума внешней информации, или просто принцип максимума информации как следствие закона информационной экспансии: любой информационный процесс управления направлен на максимизацию информационно-регулятивного эффекта при допустимых ресурсных затратах.

Этот принцип так же всеобщ, как и изложенные выше принципы и законы. Он действует в косной и живой природе, будь то взаимодействие лекарства с вирусом, произведения искусства с созерцателем, власти с народом и т.п. В синергетике этот принцип был обоснован М. Эйгеном в рамках развитой им теории биоэволюции как принцип селективной ценности информации, а также Н.Н. Моисеевым (принцип минимума диссипации).

В принципе максимума информации для биосистем сформулирован в следующем виде: «организм стремится обеспечить максимум взаимной информации между стимулами и реакциями».

Рассмотрим элементарный информационный процесс - одностороннюю связь: источник (внутренняя информация в форме символов) - кодер (коды) - передатчик (сигналы) - среда (сигналы, помехи) - приемник (коды) - декодер (символы) - потребитель (внутренняя информация).

Данный процесс фундаментален, т.к. включен во все более сложные информационные процессы (двусторонний, иерархический, многосвязный, сотовый, циркулярный, кольцевой и др.). Именно поэтому мы его исследуем. Если информационный процесс явлен в материально-энергетической форме, то коды - знаковая интерпретация внутренней информации источника, сигналы - материально-энергетические носители кодов. В без энергетических (не силовых) информационных процессах коды - символы информационного поля, сигналы – без энергетические носители этих кодов. Помехи - возмущающие воздействия среды на сигналы.

Пограничными феноменами которой являются внутренняя информация источника и внутренняя информация потребителя, следует: связь как процесс есть установление понимания источника потребителем информации; связь как результат есть понимание источника потребителем.

Отсюда проблема связи есть герменевтическая проблема. Понимание как цель связи имплицирует адекватность кодов символам, переданных сигналов кодам, принятых сигналов, переданным и, наконец, отображения в потребителе отображаемому источнику. Установление понимания есть коммуникативный процесс, для которого важны надежность и быстродействие.

Данные утверждения в определенной мере расходятся с общепринятым понятием связи как коммуникации (и только!). Возможно, такое представление о связи обусловлено этимологической полисемией словарей - в частности, английскому слову communication соответствуют более десятка русских слов, в том числе связь; возможно, это представление перекочевало из кибернетики, теорий информации и связи, устойчиво ориентированных на процессуальную роль связи. Как бы то ни было, но философское понятие связи представляется нам шире его традиционной интерпретации.

Первыми рассмотрим принципы кодирования, которые должны реализовывать коды, оптимальные в изложенном выше информационном смысле. Во-первых, речь идет о лингвистической оптимальности. Язык кодера должен обеспечить первичное преобразование знаков исходного сообщения источника в кодовые символы, понятные передатчику сообщений. И чем больше разных кодовых символов, различаемых передатчиком, тем сложнее должны быть и кодер, и передатчик. Отсюда проблема простоты кода. Она особенно важна для простых систем, например, искусственных. Не менее важна и проблема краткости кода, напрямую связанная с быстродействием информационного процесса. Эта проблема важна для систем с ограниченным ресурсом времени, например, для биосистем. Требования простоты и краткости взаимопротиворечивы.

Во-вторых, кодер, находясь между источником информации и каналом связи, должен быть по входу информационно согласован с выходом источника, а по выходу - с входом канала связи. Цель этого двукратного согласования - обеспечение своевременности и сохранности информации при ее передаче по зашумленному каналу связи. Если в технических системах необходимость информационного согласования кодера в указанном смысле уже давно очевидна, то хотелось бы обратить внимание на всеобщность принципа согласования кодера вне зависимости от природы объект- субъектной системы.

Исходное сообщение объекта-источника информационно всегда избыточно, будь то извержение вулкана или речь политика, поворот руля или смена парадигмы, мысль или слово. Избыточность здесь понимается в том смысле, что каждый знак исходного сообщения из-за объективной не равно вероятности использования и межзнаковой зависимости несет информацию, заведомо меньшую максимально возможной, которая, в свою очередь, достигается только при равно вероятности и независимости знаков. Следовательно, одну и ту же информацию можно передать меньшим числом знаков, если каким-то образом компенсировать их не равно вероятность и коррелированность. Вот эта разница между реальным и оптимальным числом знаков и характеризует избыточность исходного сообщения, которая, в свою очередь, ответственна за запаздывание (несвоевременность приема) информации в целом.

С другой стороны, объективная открытость реальной системы произвольной природы означает наличие у нее не менее одного входа, не зависимого от системы, но зависимого от ее среды обитания. Следовательно, в общем случае цель системы и цель среды тоже независимы, а в частном худшем для системы случае связаны жесткой обратной зависимостью, т.е. противоположны. В результате воздействия среды на открытую систему чаще не способствуют, а мешают цели системы. Эти мешающие воздействия (помехи) на канал связи системы приводят к ошибкам несовпадения переданной и принятой информации. Для компенсации (обнаружения и коррекции) этих ошибок испытанное средство - избыточность, например, в виде простейшего повторения сигнала. Очевидно, что число таких повторений не должно быть слишком большим во избежание недопустимого запаздывания.

Итак, для обеспечения своевременности информации избыточность сообщений источника должна быть минимизирована (согласование входа - кодер источника), для обеспечения сохранности информации избыточность закодированного сообщения должна быть согласована с состоянием канала связи, т.е. с характером и уровнем помех (согласование выхода - кодер канала). Оба вида согласования взаимно противоречивы, но объективно необходимы кодеру. Напомним, что кодеры входят в структуры как естественных, так и искусственных систем, приобретая самые причудливые, а часто латентные формы, о которых мы можем только догадываться.

Лингвистический (первичный) кодер и кодер Шеннона подчиняются каждый своим принципам кодирования, которые мы и рассмотрим.

Принцип сохранения разнообразия (информации). Кодирование на языке математики есть однозначное функциональное отображение F счетного (конечного) множества А неповторяющихся знаков на множество В кодов: В=F(A). Здесь А - множество с разнообразием N равным численности множества, т.е. все элементы ai (a A)| i=1,2,...NA не повторяются. Соответственно и множество В есть множество с разнообразием NB, равным разнообразию множества А (bieB)| i=1,2,...NB где NA= NB. При этом объем исходного алфавита знаков (пи) в общем случае не равен объему алфавита кодера (пк) и, соответственно, при NA= пи NB. пк.

Равенство разнообразий множеств А и В принципиально. Задача кодирования и состоит в том, чтобы отображение F при разных (в общем случае) алфавитах источника и кодера обеспечило равенство NA= NB. В этом и состоит принцип сохранения разнообразия, сформулированный У.Р. Эшби: при кодировании посредством взаимооднозначного преобразования разнообразие не изменяется.

Математическая строгость этого принципа при однозначном функциональном отображении очевидна, т.к. каждому элементу ai отображение F сопоставляет элемент bi при NA= NB. Проблема состоит в реализации F, и эту проблему природа и человек решают в меру своих возможностей и отпущенного времени.

Итак, кодирование - это преобразование исходного разнообразия источника информации с сохранением разнообразия. Или проще, кодирование - это преобразование информации без ее потери. Поэтому в равной степени принцип сохранения разнообразия можно называть кодовым принципом сохранения информации.

Принцип выбора кода (лингвистический кодер). Вопрос о выборе кода привычен для человеческой практики. Он ставится всякий раз при создании новой информационной системы - компьютерной, связной, диагностической, библиотечной и т.п. У нас нет оснований полагать, что подобный вопрос не возникал при возникновении (создании) Универсума (Творения) и жизни в нем. Решался ли он длительным естественным отбором (эволюция) или однократным выбором (Логос, Бог), непринципиально.

В принципе каждому знаку (букве, символу) можно сопоставить свой код, т.е. объемы первичного и вторичного алфавитов можно сделать одинаковыми: пи=пк. Это обеспечивает максимально возможное быстродействие кода, т.к. одному знаковому символу соответствует один кодовый символ. Но при большом знаковом алфавите кодер получится слишком сложным, ненадежным и дорогостоящим. Так, если пи=пк=32, в электронном кодере потребуются элементы с 32 устойчивыми состояниями (токовыми, потенциальными, полевыми). Современные электроника, оптоэлектроника и спинэлектроника вряд ли смогут предложить нечто приемлемое в обозримом будущем. Поэтому, как правило, алфавит кодера, предназначенного для кодирования текстов и десятичных чисел, удовлетворяет неравенству пи> пк.

Но уменьшая алфавит кодера, мы расплачиваемся удлинением кодовых комбинаций, соответствующих знакам первичного алфавита. Как следствие, удлиняются закодированные сообщения. При этом увеличивается память (место) для их хранения и время для их передачи. Например, при пк=10 (десятичный код) представим некоторое закодированное сообщение в виде цепочки независимых кодов от 0 до 9: 591704852 (9 символов). То же сообщение в равномерном двоичном коде (пк= 2) имеет вид: 010110010001011100000100100001010010 (36 символов). Длина сообщения получилась в 4 раза больше, чем в десятичном коде, т.к. каждой десятичной цифре соответствует тетрада двоичных символов (квадруплет на языке биологии).

В неравномерном двоичном коде сообщение укоротится до 24 символов: 101100111110100100010110. И все равно проигрыш в лаконичности по сравнению с десятичным кодом составляет примерно 2,7 раза. При этом, начиная с первого же символа сообщения, закодированного неравномерным кодом, оно неоднозначно - первым декодируемым знаком может оказаться 1 (1) или 2 (10) или 5 (101). Неоднозначность (трек ошибок) декодирования охватывает все сообщение. Таким образом, за лаконичность (быстродействие) неравномерного кода приходится платить его неоднозначностью, для компенсации которой потребуются специальные меры.

Лаконичность первичного лингвистического кода чрезвычайно важна для систем, существующих в конечном времени («смертных»). От длительности информационных процессов зависит их жизнь - скорость развития во враждебной среде, конкурентоспособность, реакции на возмущения, адаптивность. Чем лаконичнее код информационного процесса, тем система жизнеспособнее, чем длиннее код, тем система уязвимее. С другой стороны, за лаконичность кода приходится платить его сложностью - ростом основания, что приводит к морфологическим осложнениям для системы.

Налицо противоречие - необходимость в одновременном удовлетворении двум противоположным требованиям: минимизации кодового алфавита (пк) и длины кода (m). Выход один - минимизировать мультипликативную суперпозицию пк и m, например, их произведение пк • m. В показано, что устойчиво оптимальным по критерию (пк • m) является троичный код. Практически мало уступают ему двоичный (компьютерный) и четверичный (генетический) коды. Конструкторы ЭВМ остановились на двоичном коде, т.к. его аппаратно-программная реализация оказалась наиболее простой, надежной и удобной для арифметическо - логических операций и современной схемотехники. Если бы этим условиям удовлетворяли троичный или четверичный коды, один из них, несомненно, стал бы компьютерным кодом в силу своей экономичности по длине кода m. А поскольку природе в результате длительной эволюции оказалось под силу то, чего пока не могут добиться инженеры за отпущенное им время, смехотворно короткое по сравнению с эволюцией, четверичный код как самый лаконичный из тройки оптимальных кодов стал генетическим, хотя он и несколько проигрывает троичному коду по интегральному критерию оптимальности.

Итак, первый принцип кодирования - принцип выбора кода - может быть сформулирован так: если для объект-субъектной системы безразлична скорость информационного процесса («бессмертная» система), то асимптотически оптимальным является самый простой - единичный код, при котором разнообразие состояний обеспечивается за счет разного числа одинаковых кодовых символов; в противном случае («смертная» система) асимптотически оптимальным является код максимально достижимой для системы сложности, в пределе - с объемом алфавита, равным разнообразию состояний объекта.

Данный принцип проясняет, почему в системах живой природы, начиная с биоклетки и выше, существует тенденция нарастания сложности кодов: от генетического к белковому, от белкового к тканевому, от тканевого к кодам органов и далее - вплоть до языков человеческого общения. Очевидно также, что эти языки - естественные и искусственные (символические) - не исчерпывают по объему алфавита всего разнообразия состояний объекта, в частности человека, и, следовательно, не оптимальны по скорости. Причина - трудность реализации оптимальных кодов, следствие - неисчерпаемые резервы в кодировании и, соответственно, в быстродействии информационных процессов, когда единственным ограничением этого быстродействия будет скорость передачи сигналов в канале связи. Не являются ли реализацией этих резервов «быстрые» образные, интуитивные, под и надсознательные языки парапсихологического общения в системах «человек-человек», «человек-информационное поле» с кодовыми символами в виде гештальтов и с сообщениями в виде последовательностей ассоциативно связанных гештальтов?

В то же время простейшие системы - химические элементы - отличаются друг от друга числом электронов (ne) и протонов (np) в атомах, причем в одном нейтральном атоме ne=np, что позволяет утверждать о «единичном атомном коде» - число единиц электронов или протонов однозначно характеризует «сообщение» о химическом элементе.

Принципы согласования кодов (кодер Шеннона). Как следует из изложенного, кодер источника (КИ) в составе кодера Шеннона ликвидирует избыточность сообщения, насколько это возможно, а кодер канала восстанавливает ее, насколько это необходимо. Подобная нелогичность манипуляций с избыточностью объяснима, если учесть, что кодеру источника известна реальная, но не оптимальная (необходимая) избыточность. Это объясняется отсутствием информации у кодера источника о состоянии канала связи. Последнее известно только кодеру канала (КК) при условии, что у него есть средства «зондирования» канала, например с помощью «разведывательных» пилот-сигналов, о качестве прохождения которых через канал сообщается кодеру по каналу обратной связи.

Поэтому проще сначала максимально возможно сократить избыточность сообщения в кодере источника, а затем добавить ее ни больше, ни меньше той, которая действительно необходима для заданного качества передачи сигналов и переносимой ими информации, что обычно и делается. При этом, если помехи в канале несущественны, от избыточности сообщений целесообразно избавиться полностью, а кодер и декодер канала могут вообще не потребоваться. Если же избыточность сообщений несущественна, а помехи в канале велики, кодер Шеннона может не содержать кодер источника (аналогично не нужен и декодер источника

Принцип экономного кодирования. Пусть лингвистический кодер как источник информации создает на входе кодера Шеннона сообщения длиной L символов с информативностью каждого символа (энтропией) НИ. Тогда информативность всего сообщения будет LH Пусть кодер источника посимвольно перекодирует это сообщение в неравномерный (в общем случае) код, причем на один символ исходного сообщения требуется в среднем v символов нового кода с информативностью каждого символа НК. Тогда информативность выходного сообщения кодера источника будет равна LvHR. Исходя из принципа сохранения разнообразия (информации), L = LvH Отсюда v = Ни / Нк.

Без избыточное (экономное) кодирование, соответствующее минимальному v, очевидно, достигается при максимуме НК, что, как следует из, возможно, если символы кода равновероятны и независимы друг от друга. Это соответствует значению НК = log пк, где пк - объем алфавита кодера источника. Отсюда vmm = Ни / log Пк . А поскольку абсолютная безизбыточность кода недостижима, реальный экономный код удовлетворяет неравенству v> Ни / log пк. Итак, принцип экономного кодирования по Шеннону требует максимальной информативности каждого кодового символа («словам должно быть тесно, мыслям просторно»), т.е. максимальной энтропии кодера источника. При этом сообщения передаются без задержек со средней скоростью (производительностью), сколь угодно близкой к пропускной способности канала связи.

Реализация этого принципа состоит в следующем:

- наиболее вероятным (часто встречающимся) символам первичного сообщения должны соответствовать самые короткие кодовые комбинации и, наоборот, маловероятным символам - самые длинные;

при не равно вероятности появления символов первичного алфавита в сообщениях экономный код должен быть неравномерным, т.е. кодовые комбинации должны иметь разную длину, при равно вероятности символов экономный код вырождается в равномерный - все кодовые комбинации по длине равны.

Знакомство с частотными словарями различных естественных подъязыков (разговорных, публицистических, литературных, научно-технических) показывает, что в подъязыках (и, значит, в языке в целом) наиболее часто используются самые короткие части речи - предлоги, союзы, артикли, частицы, местоимения, междометия. Таким образом, в естественных языках выполняется принцип экономного кодирования. Надо полагать, что и в языках фауны и флоры преобладают по частоте тоже короткие словоформы, в частности, междометия, что подтверждает зоопсихология.

В искусственных языках принцип экономного кодирования составляет основу т.н. эффективного кодирования (коды Морзе, Шеннона - Фано, Хаффмена, коды дорожных знаков, алфавитных клавиатур и т.п.). Само существование эффективных кодов базируется на не равно вероятности символов первичных (естественных) алфавитов, подтверждением чему являются текстуальные частоты букв русского алфавита и соответствующие им эффективные коды Шеннона-Фано.

Принцип надежного кодирования. В отличие от идеального канала связи без помех, которому не свойственны ошибки передачи, в реальном канале подобные ошибки возникают всегда. Для их компенсации в кодере Шеннона предусмотрен кодер канала (в декодере ему соответствует декодер канала). Таким образом, согласование кодера Шеннона с каналом связи означает минимизацию вероятности ошибки передачи сообщений до некоторого допустимого значения, отличного от нуля. Для этого кодер канала, прежде чем послать на передатчик сообщение, кодирует последнее конечным избыточным (помехоустойчивым) кодом - таким, что декодер канала может обнаружить и даже исправить ошибки передачи.

Шеннон доказал возможность помехоустойчивого кодирования, сформулировав известную теорему: если производительность источника информации не превышает пропускной способности канала связи, то всегда можно закодировать сообщение так, чтобы оно было передано без задержек с вероятностью ошибки, сколь угодно близкой к нулю.

Примем эту теорему в качестве принципа надежного кодирования.

Заметим, что сколь угодная близость к нулю не означает равенства нулю. Абсолютное исключение ошибок (вероятность ошибки равна нулю) невозможно, ибо потребовало бы бесконечно длинных сообщений (бесконечной избыточности).

Принцип надежного кодирования лежит в основе деятельности систем, информационные каналы, связи которых подвержены помехам (шумам). А поскольку таковы все системы, то и принцип надежного кодирования является всеобщим. При этом вид помехоустойчивого кода специфичен для каждой отдельной системы.

Принципы экономного и надежного кодирования взаимно противоречивы, поэтому выбор оптимального по лаконичности и помехоустойчивости кода, адекватного передаваемой информации, - непростая задача, решаемая индивидуально в каждой объект-субъектной системе.

Принципы кодирования имеют прямое отношение к общим гносеологическим проблемам понимания, объяснения, взаимопонимания, доказательства, к проблеме отражения в целом. Через уяснение принципов кодирования можно понять, почему не существует объективного информационного отражения. Главная причина различий в отражениях одного и того же объекта - в различном кодировании-декодировании внешней информации («языковом барьере»). При этом иногда различия начинаются прямо с этапа кодирования, если декодер функционально не согласован с кодером, являющимся, в свою очередь, составной частью объекта.

За этапом кодирования информации следуют этапы передачи-приема сигналов, подчиняющиеся принципам коммуникации (связи в традиционном понимании). Рассмотрим их.

Принцип объективности помех. В любом канале связи всегда присутствуют помехи. Это и есть принцип объективности помех. Докажем его.

Внутренний шум, как и внутренняя информация, свойствен любому объекту. Он обусловлен естественным теплообменом элементов объекта, хаотическим движением зарядов при ионизации атомов и молекул (термоэмиссия, инжекция и др.), квантовой природой излучений. Внешний шум обусловлен аналогичными процессами в среде, а также помехами искусственного происхождения. Шумы вредны для связи, и их всегда стараются уменьшить. Однако наши возможности в этом ограничены.

Так, чувствительность Р (как минимальная мощность обнаруживаемого сигнала) для радиоприемника с конечной полосой пропускания Af определяется по формуле: P = к[То(Ш-1)+ТА] Af, где к - постоянная Больцмана, To - абсолютная температура приемника по Кельвину (обычно 290-300°К); Ш - коэффициент шума приемника - отношение сигнал/шум по мощности, необходимое для обнаружения сигнала обнаружителем (человеком или автоматом); ТА - шумовая температура антенны, обусловленная внешними шумами подстилающей (земной, водной) поверхности и неба, а также омическими потерями в антенне.

Следует, что для достижения абсолютной чувствительности (P 0) при ненулевой полосе пропускания нужно снизить температуры Т0 и ТА до абсолютного нуля, когда теплообмен и наличие свободных электронов исключены. А это противоречит третьему началу термодинамики, утверждающему, что абсолютный нуль температуры недостижим. Ведь даже реликтовое излучение Вселенной, которому столько же лет, сколько и ей, не остыло ниже -270°C.

Наряду с шумами на систему воздействуют внутрисистемные помехи, обусловленные внутренними второстепенными информационными процессами, мешающими основному (на данный момент) информационному процессу. Внутрисистемные (в указанном смысле) помехи свойственны любой сложной системе, элементы которой являются потенциальными источниками и потребителями информации внутри системы. Например, человек как сложная система постоянно подвержен внутрисистемным помехам на уровне тканей и органов, информационно взаимодействующих друг с другом помимо воли хозяина и даже во сне. Мозг как сложная система постоянно «шумит», мешая восприятию информации.

Принцип неопределенности сигнала. Помимо объективного ограничения, налагаемого помехами на качество связи между передатчиком и приемником, канал связи имеет и другое фундаментальное ограничение - конечность пространственно-временных параметров передатчика и приемника. Рассмотрим влияние этого ограничения.

В физике и ее технических приложениях известны т.н. соотношения неопределенности, природа которых и заключается в пространственно- временной конечности физических объектов. Так, соотношение неопределенностей Гейзенберга в квантовой физике утверждает, что нельзя одновременно точно измерить положение и импульс (скорость) элементарной частицы. Аналогичное соотношение неопределенностей в радиолокации не позволяет одновременно точно измерять дальность до цели и ее скорость. Вообще в системах эхо-локации (радары, сонары, летучие мыши, дельфины и др.) абсолютно точное измерение координат (дальности, азимута и угла места) потребовало бы передатчиков с бесконечной мощностью, антенн с бесконечно большой апертурой, абсолютно бесшумных приемников с бесконечно широкой полосой пропускания. Некоторые из этих гипотетических устройств не обязательны при совместном использовании, но даже одного из них достаточно, чтобы повергнуть конструкторов в мистический ужас.

Рассмотрим передачу сообщения через канал связи. Предположим, что оно конечно во времени. Это согласуется с практикой. У любого конечного процесса есть начало и конец в виде некоторых скачков из «небытия в бытие» (начало) или наоборот - из «бытия в небытие» (конец). В моменты скачков крутизна процесса бесконечна. При этом длительность скачка, естественно, равна нулю. Значит, частотный спектр этого процесса включает бесконечную спектральную составляющую (частота обратна длительности), и, следовательно, ширина спектра конечного во времени процесса бесконечна, что нереально. Если ограничить ширину спектра сигнала некоторой конечной максимальной частотой, свойственной резонансной системе генератора передатчика, то сигнал, строго говоря, не имеет начального и конечного скачков и поэтому бесконечен во времени, что тоже нереально.

Иными словами, в природе не существует процессов, имеющих одновременно конечные длительность и спектр, а следовательно, нет и таких сигналов в каналах связи. Но поскольку и длительность, и спектр сигналов реально ограничены, конечны в силу пространственно-временной конечности параметров каналов связи, точное воспроизведение конечных сообщений невозможно любыми сигналами в любом канале связи.

Примем это положение, вытекающее из известной теоремы Котельникова-Шеннона, в качестве принципа неопределенности сигнала и смиримся с тем, что даже в идеальном - без помех - канале связи переносимые сигналами закодированные сообщения искажены по сравнению с теми же сообщениями на входе передатчика. Не меньшие искажения претерпевает сигнал и в приемнике, ибо вероятность абсолютно точного совпадения амплитудно-фазочастотных характеристик передатчика и приемника или (хотя бы не ухудшение этих характеристик в приемнике) как залог безошибочного приема сигналов в идеальном канале связи близка к нулю, а формы переданного и принятого сигналов никогда не совпадают. Таким образом, конечные по длительности сообщения искажаются согласно принципу неопределенности сигнала дважды - сначала в передатчике, затем в приемнике.

Представляется важным для философского осмысления сопоставить, на первый взгляд, не сопоставимое - принцип неопределенности сигнала и логику связи. Если сигнал по длительности и спектру не противоречит своей реализуемости, он не полон в одном из смыслов (спектральном или временном) или в обоих сразу. Если же сигнал полон в указанных смыслах, он противоречив в своей реальности, ибо он не может быть одновременно (во времени и по спектру) и даже порознь (во времени или по спектру) реально бесконечным.

Подобная аналогия наводит на размышление, что известные физические соотношения неопределенности, проистекающие из эмпирических реалий конечного пространства-времени и обобщаемые на общенаучном языке математики теоремой Геделя о неполноте арифметической логики, приоткрывают завесу над латентной квазибесконечной «логикой» Универсума, данной нам лишь частично в своей конечной (дискретной) неполноте и кажущейся противоречивости. Из изложенного также следует, что природа «логики» Универсума, предположительно, информационна и континуальна (непрерывна).

Принцип порога В традиционных материально-энергетических каналах связи в дополнение к объективным спектральным искажениям сигналов добавляются искажения и потери сигналов, обусловленные конечным отношением «сигнал/шум» на входе приемника.

Дело в том, что обнаружение сигнала на фоне шумов (детектирование) возможно, если сигнал превысил порог обнаружения, характерный для приемников любой природы - электрических, электромагнитных, химических, оптических, вибрационных, психических, социальных, цифровых, аналоговых и т.п. Часть сигнала или даже весь сигнал могут оказаться ниже порога и, соответственно, потеряться для приемника. Информация, переносимая этим сигналом, будет искажена или утеряна для потребителя.

Пороговый эффект объективно обусловлен маскированием слабых (субпороговых) сигналов шумами, внешними и внутрисистемными помехами. Для обнаружения субпороговых (подпороговых) сигналов пришлось бы повысить чувствительность приемника, уменьшая порог обнаружения, и, следовательно, пустить в оконечное устройство шумы и другие помехи. А это чревато ложными срабатываниями оконечных устройств от шумов (помех). Последнее не менее опасно, чем пропуск сигналов. Поэтому повышать чувствительность приемника целесообразно до определенного предела, зависящего от допустимой вероятности ложных срабатываний при заданном шуме (уровне помех). Этот предел и есть порог обнаружения сигнала.

Желая избежать ложных сигналов от внутреннего шума, внутрисистемных и внешних помех, потребитель загрубляет вход приемника (ухудшает его чувствительность) и тем самым вместе с шумом и помехами теряет субпороговую информацию. В результате у сложных систем со сравнительно большим энергоинформационным внутренним шумом (высокоинтеллектуальные системы) относительная доля субпороговой информации оказывается больше, чем у простых малошумящих (неинтеллектуальных) систем, и сложные системы теряют больше субпороговой информации, чем простые. Такова плата за сложность, за интеллект, приводящая к нечувствительности сложных систем к информации «тонких миров» - той информации, которая, возможно, доступна «братьям нашим меньшим» и лишь редким представителям человечества.

В теории и технике связи и локации хорошо известны методы оптимальной фильтрации сигналов, позволяющие выделить субпороговые сигналы из шумов. Не такой ли способностью обладают гении, провидцы, телепаты, йоги и т.п., воспринимая субпороговые сигналы реальных информационных полей и метафизического информационного поля Универсума? Механизмы подобного восприятия субпороговой информации до сих пор не познаны, часто игнорируются научным сообществом даже вопреки очевидным фактам. Может, специалистам стоит поискать ответ в технических системах, где эти механизмы давно реализованы? Ведь проблема потерь субпороговой информации, возможно, - одна из важных для развития человеческой цивилизации. Поэтому принцип оптимальной фильтрации выделен ниже в самостоятельный принцип связи.

Более общим по сравнению с порогом обнаружения является понятие порога различения сигналов. Ведь обнаружение, в сущности, есть не что иное как различение сигнала и шума (помехи). Порог различения в информационном процессе есть проявление весьма широкого спектра философских отношений: различия и тождества, существенного и несущественного, определенного и неопределенного, дискретного и непрерывного, конечного и бесконечного. Если бы не существовало порогов различения (обнаружения), не существовало бы и информации, ибо ее нельзя было бы отличить от шума, помех и дезинформации, один сигнал отличить от другого. Связь как передача разнообразия была бы невозможна, т.к. в приемнике отсутствовали бы пороговые критерии отбора сигналов. Важно отметить, что эти пороги устанавливает потребитель информации, ибо только он решает, какая информация имеет для него значение.

Насколько философски широки и значимы понятия кода и сигнала, настолько же значимо и понятие порога. Так, одна из важнейших процедур развития систем - процедура отбора - невозможна без ограничений разнообразия, накладываемых критериями отбора, которые физически реализуются через пороги обнаружения и различения сигналов, а онтологически - через закон необходимого разнообразия и диалектический закон количественно-качественных переходов.

Именно пороги защищают систему, ограничивая разнообразие ее входных воздействий до необходимого разнообразия согласно закону.

Итак, принцип порога состоит в объективном существовании порогов различения сигналов и помех (обнаружение), одних сигналов от других (распознавание). Принцип порога позволяет отделить значимую информацию от не значимой, распознать информационный элемент в ряду других информационных элементов.

Отметим также, что сообщение, переносимое сигналом, представляет его (сигнала) переменную компоненту в отличие от самого носителя - постоянной компоненты сигнала. Информативно разнообразие. Применительно к сигналу это значит, что информативны его переменные асимметричные составляющие, ибо передаваемое разнообразие заключено именно в них. Постоянная, симметричная составляющая, не обладая разнообразием, соответственно, неинформативна и как незначимая для потребителя отсекается в приемнике при детектировании информативной переменной составляющей, значимой для потребителя.

О каком разнообразии, о какой информации можно рассуждать, наблюдая на экране осциллографа прямую линию развертки или уставясь в чистый лист бумаги? Разве что зафиксировать наличие самого носителя, разнообразие которого равно двум состояниям «есть-нет». Таким же разнообразием состояний обладает рубильник, монета. Этого явно недостаточно, чтобы считать рубильник и монету информативными развитыми системами, впрочем, как и носители сигналов.

Таким образом, коммуникация как установление понимания морфологически есть передача разнообразия.

Принцип усиления. Известно, что в N-мерном пространстве сила взаимодействия объектов обратно пропорциональна (N-ой степени от расстояния между ними. В нашем трехмерном пространстве этот закон сводится к закону обратных квадратов. Ему подчиняются и сигналы в информационных каналах связи, использующих открытый эфир в пределах нашей Вселенной. Кроме того, любой сигнал мультипликативно ослабляется средой распространения, «вязнет» в ней в степени, зависящей от природы среды. Наконец, сигнал аддитивно маскируется или разрушается помехами (согласно принципу объективности помех). Все эти факторы приводят к объективной необходимости усиления переданных сигналов на приемной стороне канала связи до уровня, превышающего порог различения сигналов (порог срабатывания декодера).

Приемник-усилитель не работает без источника питания (энергии). Коэффициент усиления сигнала конечен и определяется тепловым эквивалентом полученной энергии за вычетом тепла.

Мы рассмотрели вкратце информационный аспект усиления, когда выходом усилителя является сигнал, несущий информацию. В общем случае выходом усилителя может быть любой субстрат - информация, энергия, вещество (масса), но рабочая характеристика такого усилителя всегда соответствует логистической тенденции.

Феномен усиления в приведенном общем смысле свойствен открытым системам самой различной природы, например, химической (катализ, ферментация), биологической (размножение, рост), психологической (развитие интеллекта), технической (связь, управление) и др. В каждом из этих примеров используется свой источник питания - среда обитания, преобразователи энергии, вещества, информации. Материально-энергетические системы черпают первичную энергию из первичных форм теплового движения, которые, в свою очередь, подчиняются известным началам термодинамики; и, как внешне ни далеки друг от друга эти системы, их усилительная (эволюционная) способность в итоге определяется конечной работой теплообмена при соблюдении законов сохранения энергии и вещества.

Информационные системы черпают первичную информацию из первичных форм информационного поля, которые подчиняются изложенным выше началам информационного подхода. Усилительная способность этих систем (коэффициент усиления информации) определяется конечной внешней информацией, полученной ими в результате информационного взаимодействия со средой за вычетом информации, бесполезно рассеянной на элементах системы, и при соблюдении закона сохранения информации. Аналогично можно интерпретировать феноменологические модели усиления в энергоинформационных и материально-энерго-информационных системах.

Усиление сигнала не означает только увеличение его амплитуды - это частный физикалистский аспект усиления сигнала, распространяющегося в пространстве-времени. Синергетический аспект усиления состоит в усилении разнообразия(самоорганизация), усилении интеллекта (самообучение). При этом технологически усиление может состоять не только в умощнении, но и в выделении (фильтрации) латентного сигнала из шумов, латентной информации из информационного шума и дезинформации, существенного из несущественного, значимого из незначимого и вредного и т.п. В этом смысле мы имеем дело с философским обобщением понятия усиления.

Иными словами, сигнал - это любой процесс, и он может быть усилен до пределов, потенциально ограниченных мощностью источника питания приемника. В этом и состоит общий принцип усиления. Если усиливаются разнообразие (сложность) и (или) интеллект системы, то потенциальный предел усиления определяется информационной мощностью (информативностью) ее источника питания - а именно, разнообразием и интеллектом среды. В этом состоит частный информационный принцип усиления.

Другая формулировка общего принципа усиления: малое количество энергии, несущее информацию, управляет большими массами и большими количествами энергии. Здесь важно, что энергия, инициирующая управление, несет информацию - иначе управление несостоятельно. Информация - вот первоисточник любого управления. В теории управления этот принцип называют кибернетическим принципом управления.

Принцип оптимальной фильтрации. Из принципа порога следует, что субпороговый сигнал не обнаруживается. Однако обращено внимание на механизм оптимальной фильтрации, реализованный технически и, возможно, биологически и психически. Согласимся, что каждому из нас приходится сталкиваться с феноменами вспоминания давно «похороненных» следов памяти, вдохновенного творчества, когда неизвестными путями к нам приходит информация, нужная для решения задачи и обычно недоступная, спрятанная в информационном шуме. Полагаем, что за этими феноменами в определенной мере скрываются биологические и психические механизмы оптимальной фильтрации, обнаруживающие скрытый шумами сигнал. Возможно, самонастройка медиумов на взаимодействие с информационным полем означает именно сосредоточенную внутреннюю настройку психического оптимального фильтра. Эффект оптимальной фильтрации существен для понимания нестандартных информационных процессов, связанных с восприятием латентной информации.

Техническая реализация оптимальных фильтров достаточно разнообразна. Для нас важно их общее свойство - подобие (т.е. совпадение с точностью до постоянных коэффициентов) информационных характеристик передаваемого сигнала и приемника (оптимального фильтра) этого сигнала. Такими взаимосвязанными характеристиками являются амплитудно-фазочастотный спектр сигнала и соответствующая рабочая характеристика приемника. Очевидно, что оптимальная фильтрация в приведенном смысле возможна при условии априорного знания информационных характеристик ожидаемого сигнала.

На основании изложенного сформулируем обобщенный принцип оптимальной фильтрации в следующем виде: для эффективного обнаружения латентного сигнала в маскирующем шуме информационные параметры приемника и сигнала должны быть подобны.

Этот принцип, доведенный до схемотехнических решений, материализует философскую суть эффективного познания объекта: субъект должен уподобиться объекту, чтобы эффективно познать последний. Сосредоточение мысли субъекта на объекте познания, феноменологическая интенциональность сознания, по нашему мнению, суть процессы именно такого уподобления, самонастройки интеллектуального приемника субъекта на режим оптимальной фильтрации сигналов познания, передаваемых объектом. Важно, что для адекватного уподобления объекту познания субъект должен априори, если не знать, то, по крайней мере, представлять латентные познаваемые свойства объекта. Следовательно, для эффективного познания субъект априори должен иметь теорию объекта, чтобы настроить свои средства познания (чувства, приборы, мозг) на режим оптимальной фильтрации сигналов, несущих внешнюю информацию об объекте.

Отсюда возникает неожиданная точка соприкосновения с априоризмом И. Канта, согласно которому в каждом акте познания познающий субъект заранее обладает некими существовавшими до него формами, категориями, которые придают смысл познанию объекта и обеспечивают познание его смысла. В этом априоризм Канта «находит взаимопонимание», во-первых, с концепцией информационного поля как хранителя информации, во-вторых, с принципом оптимальной фильтрации. Воистину мудрость Канта - на все времена!

Принцип оптимальной фильтрации - не сциентистский домысел, а прагматическое правило поведения интеллектуальных систем: «решая задачу, знай, ответ» (математики), «нужная информация - тому, кто ее ожидает» (ученые, экстрасенсы), «каждый видит (слышит) то, что хочет видеть (слышать)» (социум в целом).

Принцип оптимальной фильтрации согласуется с законом сохранения информации и подтверждает его следствия с гносеологических и праксеологических позиций.

Остается вопрос о взаимопревращениях символов и знаков (кодов) непосредственно на выходе источника и на входе потребителя информации. Это знакомые нам проблемы физических оснований кодового преобразования идеального в материальное, трансцендентального в эмпирическое, репликации внутренней информации во внешнюю.

Из изложенного следует, что коды-знаки суть продукты материального проявления информационного поля (носителя символов) в физических полях, если по самому характеру информационного процесса внешняя информация должна быть явленной, а ее носитель, соответственно, - энергетическим. Тогда декодирование кодов в символы должно быть обратным процессом, т.е. виртуализацией физических полей в информационное поле. При неэнергетическом характере информационного процесса такие взаимопревращения излишни, кодирование превращается в неявленную символьную интерпретацию объекта в том же информационном поле. Данная гипотеза представляет интерес для дальнейшего философского анализа.

Изложенные принципы коммуникации работают не порознь, а в комплексе. Объективный рост уровня естественных и искусственных помех по мере интенсификации информационного метаболизма в развивающейся системе имплицирует рост порогов отбора («проходной балл») ценной информации, в результате чего ее все более значительная часть оказывается субпороговой, нераспознанной, рассеянной, не выявляемой усилением и с трудом поддающейся оптимальной фильтрации.

Данная проблема должна быть рассмотрена в аспекте безопасности информации. Здесь требуется четко различать несколько подходов: а) защита информации от рассеяния и искажения помехами; б) защита потребителя от дезинформации и информационного шума; в) защита информации от несанкционированного доступа, копирования и имитации. Каждый из данных подходов требует самостоятельного глубокого исследования во всех аспектах существования информации, включая социальный. Наша рефлексия ограничивается первым подходом в онтологическом аспекте.

Налицо энтропийная тенденция, диссипативная по отношению к внешней информации, но, как ни парадоксально, благоприятная для внутренней информации в аспекте поддержания эволюционного потенциала развивающихся систем. В данном смысле «умеренная» диссипация внешней информации есть стимул ее потенциального генерирования, а накопление без рассеяния опасно для развития в целом, как опасно отсутствие информационного дефицита в «заорганизованной» системе. Нуль-энтропия системы означает конец ее развития, ее свободы. Не только художник, но и любая развивающаяся («творческая») система должна быть свободной.

Возникает проблема меры «умеренности» рассеяния информации. Данную проблему интерпретируем как проблему гармонии между генерированием и рассеянием информации.

Гармония между генерированием и рассеянием информации может пониматься в контексте либо гармоничного лечения, целеполагающего позитивный эффект при допустимом уровне неизбежных негативных «побочных» эффектов, либо эстетической гармонии золотого сечения, либо принятия оптимального решения (по Байесу, Парето, Нейману-Пирсону и др.). Выбор методологии защиты информации зависит от целей обороны.

Проблема безопасности информации в рассмотренном аспекте приобретает философский смысл.

 

АВТОР: Гухман В.Б.